B.Sc. (Prog.)/ BA (Prog.) Semester-IV with Mathematics as non-Major

Category-III

DISCIPLINE SPECIFIC CORE COURSE - 4 (Discipline A-4): ABSTRACT ALGEBRA

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits					Pre-requisite
		Lecture		Practical/ Practice		of the course (if any)
Abstract Algebra	4	3	1	0	Class XII pass with Mathematics	NIL

Learning Objectives: The primary objective of the course is to introduce:

- Modular arithmetic, fundamental theory of groups, rings, integral domains, and fields.
- Symmetry group of a plane figure, and basic concepts of cyclic groups.
- Cosets of a group and its properties, Lagrange's theorem, and quotient groups.

Learning Outcomes: This course will enable the students to:

- Appreciate ample types of groups present around us which explains our surrounding better, and classify them as abelian, cyclic and permutation groups.
- Explain the significance of the notion of cosets, normal subgroups and homomorphisms.
- Understand the fundamental concepts of rings, subrings, fields, ideals, and factor rings.

SYLLABUS OF DISCIPLINE A-4

UNIT-I: Introduction to Groups

Modular arithmetic; Definition and examples of groups, Elementary properties of groups, Order of a group and order of an element of a group; Subgroups and its examples, Subgroup tests; Center of a group and centralizer of an element of a group.

UNIT-II: Cyclic Groups, Permutation Groups and Lagrange's Theorem (18 hours)

Cyclic groups and its properties, Generators of a cyclic group; Group of symmetries; Permutation groups, Cyclic decomposition of permutations and its properties, Even and odd permutations and the alternating group; Cosets and Lagrange's theorem; Definition and examples of normal subgroups, Quotient groups; Group homomorphisms and properties.

UNIT-III: Rings, Integral Domains and Fields

Definition, examples and properties of rings, subrings, integral domains, fields, ideals and factor rings; Characteristic of a ring; Ring homomorphisms and properties.

16

(12 hours)

(15 hours)

Essential Reading

1. Gallian, Joseph. A. (2017). Contemporary Abstract Algebra (9th ed.). Cengage Learning India Private Limited, Delhi. Indian Reprint (2021).

Suggestive Reading

• Beachy, John A., & Blair, William D. (2006). Abstract Algebra (3rd ed.). Waveland Press.

B.Sc. (Physical Sciences/Mathematical Sciences) Semester-IV with Mathematics as one of the Core Discipline Category-III

DISCIPLINE SPECIFIC CORE COURSE – 4 (Discipline A-4): ABSTRACT ALGEBRA

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code		Credit	distribution	of the course	criteria	Pre-requisite of the course (if any)
		Lecture		Practical/ Practice		
Abstract Algebra	4	3	1	0	Class XII pass with Mathematics	NIL

Learning Objectives: The primary objective of the course is to introduce:

- Modular arithmetic, fundamental theory of groups, rings, integral domains, and fields.
- Symmetry group of a plane figure, and basic concepts of cyclic groups.
- Cosets of a group and its properties, Lagrange's theorem, and quotient groups.

Learning Outcomes: This course will enable the students to:

- Appreciate ample types of groups present around us which explains our surrounding better, and classify them as abelian, cyclic and permutation groups.
- Explain the significance of the notion of cosets, normal subgroups and homomorphisms.
- Understand the fundamental concepts of rings, subrings, fields, ideals, and factor rings.

SYLLABUS OF DISCIPLINE A-4

UNIT-I: Introduction to Groups

Modular arithmetic; Definition and examples of groups, Elementary properties of groups, Order of a group and order of an element of a group; Subgroups and its examples, Subgroup tests; Center of a group and centralizer of an element of a group.

UNIT-II: Cyclic Groups, Permutation Groups and Lagrange's Theorem (18 hours) Cyclic groups and its properties, Generators of a cyclic group; Group of symmetries; Permutation groups, Cyclic decomposition of permutations and its properties, Even and odd

(12 hours)